## Math 254-1 Exam 10 Solutions

1. Carefully define the term "dependent". Give two examples in $\mathbb{R}^{2}$.

A set of vectors is dependent if there is a nondegenerate linear combination yielding the zero vector. Examples in $\mathbb{R}^{2}$ include $\{(0,0)\},\{(1,1),(2,2)\}$, $\{(1,0),(0,1),(2,3)\}$.

For the next two problems, consider the matrix $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 0 & 2 \\ 0 & 2 & -3\end{array}\right)$.
2. Calculate $|A|$ by using the formula for $3 \times 3$ determinants.

$$
\begin{aligned}
& \text { We have }|A|=(2)(0)(-3)+(1)(2)(0)+(-1)(1)(2)-(0)(0)(-1)-(2)(2)(2)- \\
& (-3)(1)(1)=-2-8+3=-7
\end{aligned}
$$

3. Calculate $|A|$ by expanding on the second column.

$$
\begin{aligned}
& \text { We have }|A|=1(-1)^{1+2}\left|\begin{array}{ll}
1 & 2 \\
-3
\end{array}\right|+0(-1)^{2+2}\left|\begin{array}{c}
2 \\
0
\end{array}-1\right|+2(-1)^{3+2}\left|\begin{array}{ll}
2 & -1 \\
0 & -1
\end{array}\right|=-\left|\begin{array}{ll}
1 & 2 \\
0 & -3
\end{array}\right|- \\
& 2\left|\begin{array}{l}
2-1 \\
1
\end{array}\right|=-(-3-0)-2(4-(-1))=-(-3)-2(5)=-7 .
\end{aligned}
$$

4. Solve the linear system $\left\{\begin{aligned} 2 x+y & =5 \\ -2 x+y & =1\end{aligned}\right\}$ using Cramer's rule.

Cramer's rule gives $x=\frac{\left|\begin{array}{cc}5 & 1 \\ 1 & 1\end{array}\right|}{\left|\begin{array}{ll}2 & 1 \\ -2 & 1\end{array}\right|}=\frac{4}{4}=1, y=\frac{\left|\begin{array}{cc}2 & 5 \\ -2 & 1\end{array}\right|}{\left|\begin{array}{ll}2 & 1\end{array}\right|}=\frac{12}{4}=3$.
5. Find $|B|$, for $B=\left(\begin{array}{ccccc}2 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & -2 & 0 \\ 4 & 0 & 1 & 0 & 1 \\ 1 & 1 & -2 & 0 & 3\end{array}\right)$.

Many approaches are possible. To do this efficiently requires a combination of elementary row/column operations and Laplace expansions. Adding twice the second column to the fourth gives the matrix $C=\left(\begin{array}{ccccc}2 & -1 & 0 & -1 & 0 \\ 0 & 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 1 \\ 1 & 1 & -2 & 0 & 1 \\ \hline & -2 & 2 & 3\end{array}\right)$. $|B|=|C|$, and we find $|C|$ by expanding on the third row: $|C|=1 C_{32}$, where $C_{32}=(-1)^{3+2}|D|$, for $D=\left(\begin{array}{cccc}2 & 0 & -1 & 0 \\ 0 & 2 & 1 & -1 \\ 4 & 1 & 0 & 1 \\ 1 & -2 & 2 & 3\end{array}\right)$. We add twice the third column of $D$ to the first column to get the matrix $E=\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 2 & 2 & 1 & -1 \\ 4 & 1 & 0 & 1 \\ 5 & -2 & 2 & 3\end{array}\right) \cdot|D|=$ $|E|$, and we find $|E|$ by expanding on the first row: $|E|=(-1) E_{13}$, where $E_{13}=(-1)^{1+3}|F|$, for $F=\left(\begin{array}{ccc}2 & 2 & -1 \\ 4 & 1 & 1 \\ 5 & -2 & 3\end{array}\right)$. We now calculate $|F|=6+10+8-$ $(-5)-(-4)-24=9$. Hence $|E|=-9,|C|=9,|B|=9$.

